Finite groups have even more conjugacy classes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Groups Have Even More Conjugacy Classes * By

In his paper ”Finite groups have many conjugacy classes” (J. London Math. Soc (2) 46 (1992), 239-249), L. Pyber proved the to date best general lower bounds for the number of conjugacy classes of a finite group in terms of the order of the group. In this paper we strengthen the main results in Pyber’s paper.

متن کامل

Finite groups have even more centralizers

For a finite group $G$‎, ‎let $Cent(G)$ denote the set of centralizers of single elements of $G$‎. ‎In this note we prove that if $|G|leq frac{3}{2}|Cent(G)|$ and $G$ is 2-nilpotent‎, ‎then $Gcong S_3‎, ‎D_{10}$ or $S_3times S_3$‎. ‎This result gives a partial and positive answer to a conjecture raised by A‎. ‎R‎. ‎Ashrafi [On finite groups with a given number of centralizers‎, ‎Algebra‎ ‎Collo...

متن کامل

Finite Groups Have More Conjugacy Classes

We prove that for every > 0 there exists a δ > 0 so that every group of order n ≥ 3 has at least δ log2 n/(log2 log2 n) 3+ conjugacy classes. This sharpens earlier results of Pyber and Keller. Bertram speculates whether it is true that every finite group of order n has more than log3 n conjugacy classes. We answer Bertram’s question in the affirmative for groups with a trivial solvable radical.

متن کامل

finite groups have even more centralizers

for a finite group $g$‎, ‎let $cent(g)$ denote the set of centralizers of single elements of $g$‎. ‎in this note we prove that if $|g|leq frac{3}{2}|cent(g)|$ and $g$ is 2-nilpotent‎, ‎then $gcong s_3‎, ‎d_{10}$ or $s_3times s_3$‎. ‎this result gives a partial and positive answer to a conjecture raised by a‎. ‎r‎. ‎ashrafi [on finite groups with a given number of centralizers‎, ‎algebra‎ ‎collo...

متن کامل

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2011

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-011-0017-5